So far I have:
- Collected junior student voice - year 9's from 2017 reported being 6.2 out of 10 "good at science," and unsure (aka - open to convincing about) whether or not they would take a science during their senior years.
- Collected the perspectives of young people - year 9 students rated science 7.5 out of 10 "fun" and being 7.1 out of 10 "engaged in class." Students reported that science is "important" - 8.9 out of 10.
- Shared anecdotes and student achievement data from senior biology in 2016, which highlighted room for improvement in student preparedness for senior science.
- Gathered staff voice to find out if this was only the case in biology - teachers thought students were roughly half as prepared as they need to be (5 out of 10), and the junior curriculum was not doing as well as it could. Teachers also mentioned specific areas that could be improved.
- Looked at student achievement data in senior science back as far as 2015 if it was available, and failed to find a clear trend of improving achievement over time; some years were just randomly better than others.
- A similar trend was found in Maori student achievement data in senior science; it changed every year and the sample size was small.
- This was a key takeaway from my data analysis - not many Maori students have been selecting to take a science in their senior years.
- I also had a look at the junior e-asTTle reading and writing data (using my class as a random sample) to see what level of abilities our juniors have arrived with this year; only 2 of my class are writing at the national norm and all the rest are reading and writing below national norms.
- Established that I will focus on Achievement Challenge 1, which is about raising Maori student engagement and achievement by increasing cultural visibility. I will also incorporate the cluster-wide focus on literacy.
My hypothesis is that the junior science curriculum could do with a bit of a shake-up. It currently is only "half" preparing students for senior science (according to teachers) and specific areas of improvement have been mentioned (graphing skills, writing scientific reports, researching, making notes, atomic structure, acids and bases, genetics and cells). Students are reporting they are only 7.1 out of 10 "engaged" during science class, though they know science is "important." Maori students are not often selecting to take senior science for whatever reason (a side-study could be done on this; do they see it as less valuable in their lives, are they less engaged and interested in science, are they less confident?) Another side note is that Tamaki likes to try new things each year and our current sites and resources need to be remade each year, which is tiresome and time-consuming.
There must be a way to develop the junior curriculum so that it can be flexible enough to move with new themes and topics, to integrate with other subjects, and maybe even eventually let students move through it at their own pace and in a form they select. The NZC dictates some of the content we must teach - but we can try to squish it into around into interesting contexts for our students.
I would like to try and design an online curriculum for Tamaki College that is flexible, involves choice, has lots of links between science and culture, or science and our student's everyday lives; includes reading and writing, investigating, and has students learning and then creating as they move through the SOLO taxonomy levels. As I do this I will increase the cultural visibility of science, and have opportunities for improving literacy, and any changes I make will have a broader reach than just changes I make inside my classroom...
Watch this space!
No comments:
Post a Comment